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Abstract
This paper is concerned with the estimation of the volume fraction and the
anisotropy of a two-component composite from measured bulk properties. An
algorithm that takes into account that measurements have errors is developed.
This algorithm is used to study data from experimental measurements for
a nanocomposite with an unknown nanostructure. The dependence on the
nanostructure is quantified in terms of a measure in the representation formula
introduced by D Bergman. We use composites with known nanostructures to
illustrate the dependence on the underlying measure and show how errors in the
measurements affect the estimates of the structural parameters.

1. Introduction

In two previous papers [1, 2], we discussed the possibility of bounding structural parameters,
such as the volume fraction and the anisotropy of a two-component composite, from
measurements of bulk properties. In practice, we have to take into account that measurements
have errors.

The geometry of the nanostructure can be described by a particular positive measure on
the interval [0, 1]. The determination of this measure from measurements of bulk properties is
by some authors called inverse homogenization. Various inverse algorithms for recovering the
measure of composites from experimental data have been developed [3–5]. When the measure
is recovered the volume fraction and the anisotropy of the material are given by the first two
moments of the measure.

Instead of seeking the measure, the measured bulk properties can be used to bound the
structural parameters. In other words, restrictions on the moments of the measure are derived
directly. The advantage with this approach is that it can be used even if we have limited
information from measurements (few or inaccurate measurements). Inverse bounds for the
volume fraction were first derived in [6, 7]. The authors use Milton’s and Bergman’s bounds
in an inverse way to bound the volume fraction from experimental data. Explicit formulae for
bounds on the volume fraction can in the case of measurements of lossy materials be found
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in [8, 2]. These inverse bounds cannot be used directly, when there are uncertainties in the
measurements.

Here we develop a numerical method based on the inverse bounds in [2] to derive bounds
on the volume fraction and the anisotropy of the composite. These bounds are derived from
measurements of the complex permittivity or the optical properties of the composite at different
frequencies. Error estimates are assumed to be available for the components and for the
effective permittivity of the composite. We use measured optical properties from a thin film
experiment to illustrate the method.

In many cases partial information about the nanostructure is available. For example,
in the random case, the composite is usually known to be approximately isotropic. This
knowledge can be used to derive tighter bounds on the volume fraction. If the volume fraction
is approximately known, the bounds on the anisotropy parameter become tighter.

Before proceeding to this problem, we discuss properties of the underlying measure (the
spectral density function) that characterize the nanostructure. Moreover, we show that the
tightness of the bounds on the structural parameters is sensitive to the nanostructure. Numerical
experiments with known nanostructures are used to illustrate this dependence on the spectral
density function and show how errors in the measurements affect the tightness of the bounds.

2. Representation of the effective permittivity

The materials in this paper are assumed to be d-dimensional and to consist of two homogeneous
and isotropic phases. The two-component material is locally modelled by the scalar relative
permittivity

ε(ε1, ε2) = ε1χ1(x) + ε2χ2(x), (1)

where the components are isotropic with constant permittivity ε1 and ε2. We use complex
valued permittivities and assume that the imaginary parts are greater or equal to zero. The
volume fraction of phase εi is denoted as fi and the total volume f1 + f2 is assumed to be one.
Write the complex permittivity of a material in the form

ε(ω) = εr(ω) + εi(ω)i, (2)

where εr(ω) and εi(ω) are the real and imaginary parts, respectively, and ω is the angular
frequency of the applied field.

We define an effective permittivity εe when the wavelength of the applied field is much
longer than the characteristic length of the nanostructure. The Herglotz property state that
Im{εe} > 0 when Im{ε1} > 0 and Im{ε2} > 0 [9], that is, the composite dissipates energy when
both components dissipate energy. Moreover, the effective permittivity has the homogeneity
property εe(cε1, cε2) = cεe(ε1, ε2) for all complex numbers c. The scaled effective permittivity

εe(ε1, ε2)

ε2
= εe

(
ε1

ε2
, 1

)
(3)

is analytic in ε1/ε2 ∈ C\] − ∞, 0] [9, 10]. From the homogeneity property and the Herglotz
property Bergman [9] derived a representation of the effective permittivity. In general, the
effective permittivity εe has the integral representation [10]

εe(ε1, ε2) = ε2 − ε2G(s), (4)

where

G(s) =
∫ 1

0

dm(y)

s − y
, s = ε2

ε2 − ε1
. (5)
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The positive measure m in the integral representation contains all nanostructural information.
Let sr and si denote the real and the imaginary parts of the parameter s, and separate the real
and imaginary parts of the integrand

G(s) =
∫ 1

0
gr

s(y) dm (y) − i
∫ 1

0
gi

s(y) dm (y), (6)

where

gr
s(y) = sr − y

(sr − y)2 + (si)2
, gi

s(y) = si

(sr − y)2 + (si)2
. (7)

When si � 1, the function gi
s(y) approximate the Dirac function πδ(y − sr), in the sense that

for any test function ϕ ∈ D(R), (gi
s, ϕ) → πϕ(sr), when si → 0. Let the measure m be in the

form

dm (y) = f (y) dy +
∑

n

βnδ(y − yn) dy, βn � 0 (8)

where f is non-negative and integrable over [0, 1]. For any test function ϕ, we have

− 1

π
lim

δ→0+

∫ ∞

−∞
Im G(x + iδ)ϕ(x) dx =

∫ 1

0
f (x)ϕ(x) dx +

∑
n

βnϕ(yn). (9)

For example, the effective permittivity for a laminate material is, for fields parallel to the
interfaces, the arithmetic mean εe = ε2 − f1ε2/s. The integral (5) then becomes G(s) = f1/s
which when δ → 0+ gives

− 1

π

∫ ∞

−∞
Im G(x + iδ)ϕ(x) dx =

∫ ∞

−∞
f1

1

π

δ

x2 + δ2
ϕ(x) dx → f1ϕ(0). (10)

We identify a mass f1 concentrated at y = 0, which we denote as dm (y) = f1δ(y) dy.
When the spectral density function f is continuous and no point masses are present, the

formula (9) is reduced to Stieltjes inversion formula [11]

f (x) = − 1

π
lim

δ→0+ Im G(x + δi), x ∈ [0, 1]. (11)

For example, the two-dimensional checkerboard structure has the exact effective permittivity
[12, p 49]

εe = √
ε1ε2. (12)

From Stieltjes inversion formula follows that the spectral density function f for the
checkerboard is

f (y) = 1

π

√
(1 − y)/y. (13)

Accurate calculations of the spectral density function f can be obtained if accurate
measurements of εe are available for 0 � sr � 1 and si � 1. In many cases these measurements
are not available and can even be impossible to perform, depending on the dispersion curves
for the materials in the composite.

Assume real valued materials with ε2 � ε1. From the relation ε1 � εe � ε2 follows

0 � G(s) � 1

s
� 1. (14)

Let s = 1 + δ, δ > 0. From the inequality above we have

1 � G(1 + δ) =
∫ 1

0

1

1 − y + δ
dm (y) � m({1})

δ
, (15)
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which implies that the measure m does not have a point mass in y = 1, since δ > 0 is arbitrary.
The moments of the measure

cn+1 = (−1)n
∫ 1

0
yn dm (y), (16)

then vanish in the limit n → ∞. The absolute value of the moments c1, c2, . . . form a non-
increasing sequence |c1| � |c2| . . .. The convergence rate of the moments cn to zero depend
strongly on the support of the measure. If m has no support close to y = 1, the convergence is
exponential.

Let s = −1/z in the representation (5). The integral representation of G is then
transformed to

Ĝ(z) = −1

z
G

(
−1

z

)
=

∫ 1

0

dm (y)

1 + zy
, (17)

which is the standard form of a Stieltjes integral representation [11].

3. Bounds on the effective permittivity

If partial information, such as the volume fraction, is available about the nanostructure, this
knowledge can be used to derive bounds on the effective permittivity [9, 13, 12]. We use the
Stieltjes series expansion

εe = ε2 + ε2zĜ(z) = ε2 F(z), F(z) =
∞∑

n=0

cnzn, (18)

where z = −1/s = (ε1−ε2)/ε2 is the contrast and the coefficients cn are given by the moments
of the measure (16). The function zĜ(z) is zero when z = 0, implying c0 = 1. The constants
cn depends on the nanostructure but not on the values of the two phases. If the nanostructure is
the same, the single series (18) gives the effective permittivity, independent of the value of the
phases. The zero-order moment c1 is the volume fraction f1 of the phase ε1 and c2 depends on
the anisotropy in the material. In the case of a d-dimensional statistically isotropic composite,
the second moment is −c1(1 − c1)/d [9, 10].

There are many different methods that gives bounds on the effective properties of the
material. In [2] Padé approximations of the Stieltjes series (18) were used to derive Milton’s
and Bergman’s well known bounds [9, 13, 12].

The εp,q Padé approximant to εe is defined by the equation

εe(z)Q(z) − P(z) = O(z p+q+1) (19)

where P and Q are polynomials of degree at most p and q , respectively [11]. This equation
gives us an approximation of the effective permittivity by the rational function

εp,q = P(z)

Q(z)
= a0 + · · · + apz p

1 + b1z + · · · bq zq
. (20)

The sequence of Padé approximations εM,M and εM+1,M of the series (18) converge, when
M → ∞, uniformly to εe/ε2 in any closed finite region of the complex plane cut along the
negative real axis from −1 to −∞ [11].

In practice, the volume fraction c1 is in some cases measured and the composite is in the
random case usually assumed to be isotropic. This gives us at most two coefficients in the series
expansion, but the rest of the coefficients cn are in most cases unknown.

4
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The convergence rate of the Padé approximations depends strongly on the value on the
contrast z and on the measure m. For |zy| < 1 the function (1 + zy)−1 has a power expansion
in zy. The integral Ĝ then has the power expansion

Ĝ(z) =
∞∑

n=0

(−z)n
∫ 1

0
yn dm (y) =

∞∑
n=0

cn+1zn, (21)

where (16) is used in the last step. The Stieltjes series (18) defining the effective permittivity is
then convergent. The condition |zy| < 1 is satisfied when |z| < 1 but also for 0 � y < 1

|z| =
|s|. That is, the series in the representation (21) converges if the support of the measure m is in
[0, |s|].

In [2] the author derived inverse bounds on the volume fraction and showed that the
distance between the bounds rapidly tends to zero for a low contrast material. If very accurate
measurements are available for a low contrast material, they give us accurate estimates of the
structural parameters, but if the errors in the measurements are not negligible we can get almost
anything. Measurements at a low contrast material contain very little information.

The conclusion is that in most cases data that give rapid convergence for all measures are
not available. The convergence of the series (18) and the Padé approximations then depends
strongly on the support and the total mass c1 of the measure. The bounds on the structural
parameters cn are obtained by inverting the bounds on the effective permittivity. The tightness
of the bounds on the structural parameters is then dependent on the measure that characterizes
the nanostructure.

4. Bounds using complex valued measurements

In [2] a method to derive bounds on any of the structural parameters cn is presented. Here we
use the bounds on the volume fraction c1 and on the anisotropy parameter c2.

The ε1,1 Padé approximant to the series (18) gives an upper bound that in the isotropic case
corresponds to the upper Hashin–Shtrikman bound [12, p 574]. The ε1,1 Padé approximant can
be inverted giving a bound on c1, [2]. Explicitly, the volume fraction is bounded from below
by [2, 8]

cL
1 = zi (ε

i
e − εi

2)
2 + (εr

e − εr
2)

2

|z|2(εi
eε

r
2 − εr

eε
i
2)

. (22)

In the same way, the generalization of the lower Hashin–Shtrikman bound [12, p 574] can be
inverted. Explicitly, the volume fraction is bounded from above by [2, 8]

cU
1 = 1 − zi (ε

i
e − εi

1)
2 + (εr

e − εr
1)

2

|z|2(εr
eε

i
1 − εi

eε
r
1)

. (23)

If the volume fraction c1 is known we derive bounds on the anisotropy parameter c2. The ε2,1

Padé approximant to the series (18) gives an upper bound that in the isotropic case corresponds
to the upper Beran bound [12, p 574]. The ε2,1 Padé approximant can be inverted giving a
bound on c2, [2]. Explicit formulae for cL

2 (c1) and cU
2 (c1) is presented in the appendix.

The formulae (22) and (23) give bounds on the volume fraction c1, but it is also possible
to use cL

2 (c1) and cU
2 (c1) to bound the volume fraction in the following way. Let c1 ∈ (0, 1)

and calculate cL
2 (ε1, ε2, εe) and cU

2 (ε1, ε2, εe) for a fix volume fraction c1. The bounds on c2 are
required to satisfy the general constraint −c1(1 − c1) � c2 � 0 [9], which restricts the possible
values on the volume fraction c1.

5
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Table 1. Complex permittivity for the two components in two different composites. Composite A
is a mix of two dielectrics and composite B is a mix of a metal and a dielectric.

Composite εr
1 εi

1 εr
2 εi

2

A 3.00 0 2.42 2.89
B −38.4 2.79 2.98 0

Example

As a first illustration, we use the data for composite A in table 1 and the checkerboard
structure (12). The effective permittivity is in this case εe = 3.05 + 1.42i. The formulae (22)
and (23) imply that the volume fraction is bounded by 0.474 � c1 � 0.526. Using the method
above, the bounds cL

2 (c1) and cU
2 (c1) provides the same bounds on c1. Moreover, the anisotropy

parameter c2 is estimated by −0.139 � c2 � −0.110. The exact values are c1 = 0.5 and
c2 = −0.125.

5. Structural bounds from measurements

The bounds (22) and (23) on the volume fraction c1 can be improved if we assume that the
composite is isotropic, but a real stochastic material is in most cases only approximately
isotropic. Moreover, in the anisotropic case the value on c2 is usually unknown. Instead
of assuming a precise value on c2, to improve the bounds on the volume fraction, we use a
statistical approach based on the c1 dependent bounds cL

2 (c1) and cU
2 (c1). A statistical approach

to the problem was also used in [6, 7], but we take into account errors in the measurements of
the components and estimate the anisotropy parameter c2.

5.1. The statistical method

Suppose that error estimates are available for the permittivity of the two components and for the
permittivity of the composite. We use uniformly distributed errors and generate independent
random numbers for the real and imaginary parts of the measured values. Sweep the volume
fraction in the range 0 < c1 < 1 and require that the anisotropy parameter c2 for a fixed value
on c1 satisfy

− c1(1 − c1) � cL
2 (ε1, ε2, εe) � cU

2 (ε1, ε2, εe) � 0, (24)

where cL
2 and cU

2 , given in the appendix, depend on the complex random numbers ε1, ε2 and εe.
This requirement gives restrictions on the possible volume fractions c1 and on the anisotropy
parameter c2. Moreover, we get restrictions on the possible values on the permittivity of the two
components and on the effective permittivity of the composite. The method gives a frequency
distribution of c1. The shape of the distribution is unknown in advance, but we chose the
number of random trials such that the distribution is well described.

We present results when the volume fraction is increased from zero to one with a small
step, but we have also used random numbers with the same result. Several sets of random
numbers of εr

1, εi
1, εr

2, εi
2, εr

e and εi
e are generated for each fixed number of c1.

5.2. Numerical examples

The checkerboard structure and a laminate material are used to illustrate the method and to show
the dependence of the bounds on the nanostructure. We use the values on the two components

6
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Figure 1. Behaviour of the integrand in the integral representation (7) for the data presented in
table 1. In both figures, the solid line is the real part and the dashed line is the imaginary part of the
integrand. The left graph corresponds to composite B and the right graph corresponds to composite
A. The value on the s-parameter for the left graph is s = 0.072 + 0.005i and the value on s for the
right graph is s = 0.8 − i. Note the difference in scale in the two graphs.

presented in table 1 and assume that the errors in all measurements are ±1%. The volume
fraction is increased from zero to one with the step 10−3 or smaller. At each volume fraction
c1, 104 random sets of εr

1, εi
1, εr

2, εi
2, εr

e and εi
e were generated.

5.2.1. The checkerboard. The checkerboard structure (12) corresponds exactly to
Bruggeman’s formula [14, p 463] at the percolation threshold c1 = 0.5. Using the spectral
density function for the checkerboard (13), the moments of the measure (16) are calculated to

c1 = 1

2
, c2 = −1

8
, c3 = 1

16
, · · · cn+1 =

(
1/2

n + 1

)
. (25)

Hence, the moments cn converge very slowly to zero.
Using the values of the complex permittivity of composite A in table 1 gives the bounds

0.46 � c1 � 0.54 on the volume fraction and the bounds −0.15 � c2 � −0.10 on the
anisotropy parameter. The arithmetic mean of the frequency distribution of volume fractions is
cmean

1 = 0.5000. In the previous section we used the same values on ε1, ε2 and εe, but assumed
exact values. The bounds are of course tighter when we have exact values, but we will see
below that the value of the contrast z = (ε1 − ε2)/ε2 and the measure m also strongly influence
the size of the bounds.

The effective permittivity of composite B, in table 1, is εe = 0.388 + 10.7i. The values of
ε1, ε2 and εe of composite B imply the bounds 0.018 � c1 � 0.99 on the volume fraction and
the bounds −0.246 � c2 � −0.001 on the anisotropy parameter. The arithmetic mean of the
frequency distribution of volume fractions is cmean

1 = 0.5000. Notice that the measurements
of composite B implies small restrictions on the possible volume fractions and the possible
values on the anisotropy parameter c2. As mentioned above, the exact values are c1 = 0.5 and
c2 = −0.125.

The values of the phases in the two composites give very different behaviour of the
integrands gr

s(y) and gi
s(y) in the integral representation (7). Figure 1 shows that the integrands

test the measure m very differently, which results in different sizes on the bounds on c1 and on
c2.

The values of the components in composite B give s = 0.072 + 0.005i. In principle, with
this small value on the imaginary part of the parameter s the function gi

s(y) in (7) is a good

7
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approximation of the Dirac function πδ(y − 0.072). This implies, that the spectral density
function f at y = 0.072 is approximately

f (0.072) ≈ − 1

π
Im

{
1 − εe

ε2

}
. (26)

Using exact values on ε1, ε2, and εe we obtain f (0.072) ≈ 1.143, which is close to the exact
value f (0.072) = 1.1428 that is given by (13). If the uncertainty in the measurements is
1%, the approximate value on f (0.072) belongs to the interval [1.138, 1.148]. In many cases
the uncertainty is much larger, with the uncertainty 5% the value of f (0.072) is estimated to
[1.118, 1.169]. This shows that in many cases, it is difficult to determine the spectral density
function pointwise with high accuracy.

5.2.2. The laminate material. The laminate material has the effective permittivity

εe = ε2(1 + c1z), (27)

where we use c1 = 0.5. In this case, only the zero-order moment c1 is non-zero. The
measurements of composite A in table 1 give the effective permittivity εe = 2.71 + 1.45i.
The bounds on the volume fraction are calculated to 0.490 � c1 � 0.507 and the bounds on
the anisotropy parameter are calculated to −0.01 � c2 � 0. The effective permittivity for
composite B, in table 1, is εe = −17.71 + 1.40i. From the measurements of composite B we
obtain the bounds 0.493 � c1 � 0.578 and −0.07 � c2 � 0. The exact values are c1 = 0.5
and c2 = 0. Notice that, in this case, the measurements of composite B implies tight bounds
on the volume fraction c1. The bounds on c2 are much tighter for the laminate material than for
the checkerboard structure.

The values of the components in composite B are taken from a real experiment. In
the next section we use data from a measurement of the optical properties of a thin film.
Composite B in table 1 corresponds to the measurements at 900 nm in figure 2. As seen in
the previous examples, the present method does not generally generate tight bounds on the
structural parameters of a metal/dielectric nanocomposite.

5.3. Experimental measurements

We give an example where the optical data are taken from a thin film experiment. The optical
properties of materials are closely related to their permittivity. The complex index of refraction
N = n + ik is

N2 = εμ, (28)

where μ is the magnetic permeability of the material. In the case of non-magnetic materials,
μ = 1, we have

εr = n2 − k2, εi = 2nk, (29)

where εr and εi are the real and imaginary parts, respectively.
The optical properties of nanosized gold particles in a magnesium oxide matrix were

measured in [17]. The measured effective refractive index and the refractive index of the
two components are presented in table 2. Using a different approach, the same set of data
has previously been studied [6]. In the previous study, no error bars were assigned to the
components, but large error bars were assigned to the effective refractive index. We take into
account errors in the measurements of the components and assume that the absolute errors in the
measurements of the effective refractive index are less than 0.01. The authors in [6] estimated

8
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Figure 2. Behaviour of the integrand in the integral representation (7) for the data presented in
table 2. In all figures, the solid line is the real part and the dashed line is the imaginary part of the
integrand. The value on the s-parameter for the four wavelengths 300, 500, 700 and 900 nm are
s = 0.197 + 0.365i, s = 0.379 + 0.202i, s = 0.161 + 0.011i, and s = 0.072 + 0.005i, respectively.
Observe the different scale in the lower right figure.

Table 2. Complex refraction index for gold [15], magnesium oxide [16] and for the gold–
magnesium oxide composite [17].

λ n1 k1 n2 k2 ne ke

300 1.53 ± 0.02 1.89 ± 0.01 1.805 ± 0.005 0 1.70 ± 0.01 0.44 ± 0.01
500 1.04 ± 0.02 1.83 ± 0.01 1.745 ± 0.005 0 1.70 ± 0.01 0.52 ± 0.01
700 0.13 ± 0.02 4.10 ± 0.01 1.731 ± 0.005 0 1.62 ± 0.01 0.74 ± 0.01
900 0.18 ± 0.02 5.66 ± 0.03 1.725 ± 0.005 0 1.84 ± 0.01 0.79 ± 0.01

the volume fraction of gold to 0.28. The volume fraction of gold was measured to 0.25, with
no error estimates provided [17].

The algorithm described above is used for the data in table 2. The number of random trials
is chosen such that the frequency distribution of c1 is well described. The volume fraction is
increased from zero to one in steps of 10−3. Using typically 5000 random sets, at each volume
fraction, the number of points in the frequency distribution is 50 000–130 000. It turned out
that the measurement at 300 nm gives the tightest bounds on the volume fraction. Figure 3
shows a histogram of the set of estimated volume fractions, where the frequency distribution is
described by 134 000 points. Using the approximate probability density function, the volume
fraction is determined to belong to the interval

0.18 � c1 � 0.32 (30)

9
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Figure 3. Left: the frequency of volume fractions c1 lying in the specified intervals for the thin
film. Right: the parameter c2 in the two-dimensional (dashed line) and three-dimensional (solid
line) isotropic case. The volume fraction is in the interval (30). The lower bound on c2 (dashed–
dotted line) and the upper bound on c2 (dotted line) are taken from (31).

with the probability 95%. Using the measurement at 300 nm the anisotropy parameter is
bounded by −0.091 � c2 � −0.022. The measurement on 500 nm gives the bounds
−0.15 � c2 � −0.047. The intersection of the bounds on c2 is

−0.091 � c2 � −0.047. (31)

The measurements on 700 nm and on 900 nm gives no further restrictions on the structural
parameters c1 and c2.

The electron micrograph image in [17] shows filaments linking the gold particles, but
the composite is most probably isotropic or close to isotropic. The thickness of the film is
150 nm [17]. A relevant question in this context is; is this film two-dimensional? Figure 3
shows c2 = −c1(1 − c1)/d when d = 2 and 3, which corresponds to an isotropic material
in two and three dimensions. If we assume that the error in the measured volume fraction
c1 = 0.25 is less than 5%, the measurement at 300 nm gives the lower bound clow

2 = −0.074.
From figure 3, we conclude the material then should be regarded as three-dimensional.

In [6] the authors assume that the material is two-dimensional and isotropic. They
estimated the volume fraction to 0.28 but did not established any error estimates (only one
set of values on the effective refractive index was found within the error bars). A possible
explanation for this is that the material should be considered as three-dimensional.

The tightness of the bounds on the structural parameters depends on the uncertainty in the
measurements. Above, we assumed that the uncertainty in the measurements of the effective
refractive index is less than 0.01. If the uncertainty is larger we obtain less tight estimates of
the structural parameters. For example, if the absolute error in all measurements are 0.05 the
bounds on the volume fraction become 0.16 � c1 � 0.34.

Tighter bounds on the volume fraction can be obtained from [2] if the material is assumed
to be isotropic. A problem with this assumption is that we actually do not know that the material
should be regarded as three-dimensional in the full range 300–900 nm. It is possible that the 150
nm thick film behaves as three-dimensional for the shorter wavelengths and as two-dimensional
for the longer wavelengths.

6. Discussion and conclusions

We have shown that the inverse bounds derived in [2] can be used even if we have uncertainties
in the measurements to estimate the volume fraction and the anisotropy of a composite. The
presented method is well suited to handle dielectric nanocomposites. The tightness of the

10
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bounds depends on the unknown nanostructure (measure), and measurements at different
contrasts of the phases test the measure in different ways. Using the presented method,
the tightest bounds are obtained if measurements are performed and bounds are calculated
at many contrasts, after which the intersection of the bounds is taken. The range of the
possible contrasts depends on the dispersion curves of the two materials and the limitation
that the homogenization theory is valid. The optimal contrast is probably not available from an
experiment.
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Appendix

A lower bound cL
2 (c1) on the anisotropy parameter c2 is given by

cL
2 = −ĉ2 − c1ĉ1, where ĉ2 = (T1 + T2 + T3 + T4)/N (32)

and

T1 = (εi
e)

2zi − 2εi
eε

i
1zi + (εi

1)
2zi + ĉ2

1(ε
i
e)

2(zi)3 − 2ĉ1ε
i
1(z

i)2εr
e, (33)

T2 = zi(εr
e)

2 + ĉ2
1(z

i)3(εr
e)

2 + 2ĉ1ε
i
e(z

i)2εr
1 − 2ziεr

eε
r
1 + zi(εr

1)
2, (34)

T3 = 2ĉ1(ε
i
e)

2zizr − 2ĉ1ε
i
eε

i
1zizr + 2ĉ1zi(εr

e)
2zr − 2ĉ1ziεr

eε
r
1zr, (35)

T4 = ĉ2
1(ε

i
e)

2zi(zr)2 + ĉ2
1zi(εi

e)
2(zr)2 (36)

N = ((εi
e)

2zi − εi
eε

i
1zi + zi(εr

e)
2 − ziεr

eε
r
1 + εi

1ε
r
ezr − εi

eε
r
1zr)|z|2. (37)

An upper bound cU
2 (c1) on the anisotropy parameter c2 is

cU
2 = (F1 + F2 + F3 + F4)/G, (38)

where

F1 = −(εi
e)

2zi + 2εi
eε

i
2zi − (εi

2)
2zi − c2

1(ε
i
2)

2(zi)3 − 2c1ε
i
2(z

i)2εr
e, (39)

F2 = −zi(εr
e)

2 + 2c1ε
i
e(z

i)2εr
2 + 2ziεr

eε
r
2 − zi(εr

2)
2 − c2

1(z
i)3(εr

2)
2, (40)

F3 = 2c1ε
i
eε

i
2zizr − 2c1(ε

i
2)

2zizr + 2c1ziεr
eε

r
2zr − 2c1zi(εr

2)
2zr, (41)

F4 = −c2
1(ε

i
2)

2zi(zr)2 − c2
1zi(εr

2)
2(zr)2, (42)

and

G = (εi
eε

i
2zi − (εi

2)
2zi + ziεr

eε
r
2 − zi(εr

2)
2 + εi

2ε
r
ezi − εi

eε
r
2zr)|z|2.
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